
An introduction to
Kotlin Coroutines

for Android

Antonis Lilis, Mobile Engineer

GDG Android Athens
Meetup 2019/02/27

http://antonis.me/

The Problem
How to prevent our
applications from blocking

● Asynchronous or non-blocking
programming is the new reality
○ Fluid client experience

○ Scalable server architecture

Approaches
● Threads

○ hard to write and maintain

● Callbacks

○ series of nested callbacks which lead to incomprehensible code

● Futures, Promises,...

○ different programming mental model

● Reactive Extensions

○ everything is a stream, and it's observable

● Coroutines

Coroutines
● Based on the concept of suspending functions

● The code is still structured as if we were writing synchronous code

● Are like light-weight threads

● Jetbrains engineers took the best ideas from other

languages like Python, Go, C# and JS

The term 'Coroutine' was coined by Melvin Conway
in 1958 (known for Conway's Law)

Kotlin Coroutines
● Kotlin provides Coroutine support at the language level

○ Actually it only adds one language keyword (suspend)

● Functionality is delegated to libraries

○ kotlinx.coroutines is a library developed by JetBrains

● Since Kotlin 1.3 Coroutines are no longer experimental

○ The major feature of this release

Suspending Functions - Continuations

Synchronous - Sequential Code

Asynchronous - Concurrent Code

The structure did not change much

Coroutines are light-weight

Suspending Functions (sequential code example)

Suspending Functions
● Used inside coroutines

like regular functions
● They can call other

suspending functions
● Waits tasks

to complete

Suspending Functions (behind the scenes)

Coroutine Builders
● Create a coroutine and provide a CoroutineScope

● Examples are runBlocking, launch, async etc

● GlobalScope.launch creates a top-level coroutine (like a Thread)

CoroutineScope
● Coroutines are launched in the scope of the operation we are performing

● We can declare a scope using coroutineScope builder

CoroutineContext
● Is an an optional parameter of all coroutine builders

● Includes a coroutine dispatcher that determines the execution thread

● inherited from the CoroutineScope if not defined

Coroutine Cancelation
● A coroutine code has to

cooperate to be cancellable

● All the suspending functions

in kotlinx.coroutines are

cancellable

Concurrency is not Parallelism
● Parallelism is about the execution of

multiple tasks at the same time

● Concurrency tries to break down tasks which we

don’t necessarily need to execute at the same time

● Concurrency's primary goal is structure,

not parallelism.

● Concurrency makes the use of

parallelism easier

Structured Concurrency
● launch is a child of

coroutineScope

● the scope waits for the
completion of all children

● in case of a crash the scope
cancels all children

● the suspend function has
no leaks

Exceptions
● An exception other than

CancellationException in a
coroutine cancels its parent

● A CoroutineExceptionHandler
may be passed to the context
to replace try /catch blocks

● If we want cancellation to be
propagated only downwards
we use SupervisorJob or
supervisorScope

Coroutines on Android
● Gradle

○ Access to Android Dispatchers.Main

○ Log unhandled exception before crashing

Lifecycle
● CoroutineScope

implementation
helps write
cleaner & safer
code

Android
● An Activity,

Fragment or other
lifecycle aware
class can
implement the
CoroutineScope

● The suspend
function make
code simpler

Libraries support for Coroutines
● Room 2.1.0-alpha03 is released with coroutines support

https://developer.android.com/jetpack/androidx/releases/archive/arch#december_4_2018

● WorkManager introduces a new CoroutineWorker

https://developer.android.com/jetpack/androidx/releases/archive/arch#nov_8_2018

● Retrofit2 Kotlin Coroutine Adapter

https://github.com/JakeWharton/retrofit2-kotlin-coroutines-adapter

● Fuel Coroutines

https://github.com/kittinunf/fuel/tree/master/fuel-coroutines

https://developer.android.com/jetpack/androidx/releases/archive/arch#december_4_2018
https://developer.android.com/jetpack/androidx/releases/archive/arch#nov_8_2018
https://github.com/JakeWharton/retrofit2-kotlin-coroutines-adapter
https://github.com/kittinunf/fuel/tree/master/fuel-coroutines

State
● shared mutable state

➔ share by
 communicating

● classes/objects
➔ coroutines

● synchronization
primitives
➔ communication
 primitives

Channels (experimental)

Actors (class or function)

Combination of

● coroutine
● state
● channel

Conventions for function types

REF: https://twitter.com/relizarov/status/1088372857766326272

https://twitter.com/relizarov/status/1088372857766326272

Final Thoughts
● Coroutines are NOT like threads

● Force us to rethink the way

we structure our code

● Intend to look like sequential code

and hide the complicated stuff

● Resource-wise are almost free

● Coroutines are the cool new thing

in the JVM/Android world

References
● Source Examples

https://github.com/antonis/CoroutinesExamples
● An Introduction to Kotlin Coroutines (blog post)

https://antonis.me/2018/12/12/an-introduction-to-kotlin-coroutines/
● kotlinlang.org

https://kotlinlang.org/docs/reference/coroutines-overview.html
● KotlinConf 2018: Exploring Coroutines in Kotlin by Venkat Subramariam

https://youtu.be/jT2gHPQ4Z1Q
● KotlinConf 2018: Kotlin Coroutines in Practice by Roman Elizarov

https://youtu.be/a3agLJQ6vt8
● Concurrent Coroutines - Concurrency is not parallelism by Simon Wirtz

https://kotlinexpertise.com/kotlin-coroutines-concurrency/
● Codelabs - Using Kotlin Coroutines in your Android App

https://codelabs.developers.google.com/codelabs/kotlin-coroutines
● Talking Kotlin (Podcast) - Libraries with Roman Elizarov

http://talkingkotlin.com/libraries-with-roman-elizarov/

https://github.com/antonis/CoroutinesExamples
https://antonis.me/2018/12/12/an-introduction-to-kotlin-coroutines/
https://kotlinlang.org/docs/reference/coroutines-overview.html
https://youtu.be/jT2gHPQ4Z1Q
https://youtu.be/a3agLJQ6vt8
https://kotlinexpertise.com/kotlin-coroutines-concurrency/
https://codelabs.developers.google.com/codelabs/kotlin-coroutines
http://talkingkotlin.com/libraries-with-roman-elizarov/

Questions?

Thank you!

http://antonis.me/

http://antonis.me/

